Accueil > A propos du LPP > Communication > Actualités archivées > 2023 > Vincent David a soutenu sa thèse "Multiscale solar wind turbulence : from theory to observations"
Vincent David a soutenu sa thèse "Multiscale solar wind turbulence : from theory to observations"
Toutes les versions de cet article : [English] [français]
Le jeudi 21 septembre 2023, Vincent David a soutenu sa thèse "Multiscale solar wind turbulence : from theory to observations".
Abstract :
The solar wind is a turbulent plasma that can be measured in situ by spacecraft such as Voyager/NASA, THEMIS/ESA, or PSP/NASA. Measurements reveal magnetic field fluctuations over a wide range of frequencies, with a change in slope around 1 Hz, indicating a transition from the single-fluid MHD behavior of the plasma to a state where ions and electrons have distinct dynamics. A second transition is observed around 50 Hz, beyond which the magnetic spectrum becomes steeper, marking a change in physics where the inertia effects of electrons become significant. The study of this turbulence is closely linked to understanding the origin of local heating, characterized by a slow decrease in ion temperature with increasing heliospheric distance. This decrease is interpreted as a signature of heating resulting from the transfer of energy from large to small scales by turbulence. The objective of this thesis is to study solar wind turbulence from MHD scales to electron inertial scales.
In the first part, we use the Zeroth law of turbulence to measure energy dissipation at MHD scales. This law states that energy dissipation per unit mass approaches a non-zero limit, known as anomalous dissipation, as viscosity/resistivity decreases. A local form of Kolmogorov’s exact law is used with THEMIS and PSP data to show that heating calculated using anomalous dissipation can be significantly higher than the average heating predicted by the exact MHD law. Furthermore, the application of anomalous dissipation proves the Zeroth law in a simplified MHD model. Its application to Voyager 2 data reveals that heating generated by shocks near Jupiter is dominant compared to that from turbulent fluctuations.
In the second part, we focus on sub-MHD scales (frequencies between 1 and 50 Hz). In situ measurements show a monofractal behavior of magnetic fluctuations, whereas at MHD scales a (standard) multifractal behavior is observed. To study this difference, high-resolution 3D direct numerical simulations of the electron reduced MHD equations are conducted in weak and strong wave turbulence regimes. These simulations reveal that only weak turbulence can reproduce the monofractality. Combined with recent work, this result suggests that at electron scales, the solar wind is in a regime of weak kinetic Alfvén wave turbulence without collisions.
Finally, a theory of (weak) wave turbulence for inertial electron MHD in the presence of a strong external magnetic field is developed. Exact solutions (Kolmogorov—Zakharov spectrum) are provided, and it is shown that the cascade is direct. The importance of considering electron mass in this regime is highlighted. Remarkably, these equations are identical (up to a constant) to those describing inertial wave turbulence in rapidly rotating non-ionized fluids. This connection underscores the importance of laboratory investigations to study turbulence at these scales, which are currently challenging to access by satellites.
These studies provide a comprehensive understanding of the turbulent behavior of the solar wind from observational, numerical, and theoretical perspectives.

Dans la même rubrique :
- 1ère Journée scientifique HelioSwarm France (LPP, 5 mai 2023, Paris)
- Le champ magnétique solaire vu en stéréo
- Intrication entre reconnexion magnétique et turbulence dans les plasmas astrophysiques
- Le LPP au congrès général des 150 ans de la Société Française de Physique
- Ondulations à la surface du choc terrestre lorsque le vent solaire souffle à forts nombres de Mach
- Journée à la mémoire de Nicole Cornilleau le 25 septembre
- Pauline Simon a soutenu sa thèse "D’une pression isotrope à l’anisotropie de pression dans les plasmas spatiaux turbulents : Investigation analytique, numérique et observationnelle"
- Collaboration interdisciplinaire autour de la turbulence d’ondes
- BepiColombo/Mio détecte les premières ondes électromagnétiques haute fréquence dans l’environnement plasma de Mercure
- Nomination de Catherine Krafft comme Membre Sénior de l’Institut Universitaire de France (IUF)
- Fête de la Science 2023
- Des chercheurs du LPP ont participé à deux ouvrages pour mieux faire connaître la physique
- Pierre Morel a soutenu son HDR « Contribution à l’étude des instabilités, de la turbulence, et du transport, dans les plasmas magnétisés »
- COMHET : une nouvelle étape dans la collaboration LPP/SAFRAN sur les propulseurs électriques
- Jean-Paul Booth reçoit le prix Nishizawa 2023
- Chen Xing a soutenu sa thèse sur le rôle de la reconnexion magnétique dans l’évolution des tubes de flux magnétique des éruptions solaires
- Sae Aizawa a été recrutée comme chargée de recherche CNRS au LPP
- Tarek Ben Slimane a soutenu sa thèse "Investigation of the Optical Emission of Hall Effect Thrusters using Collisional Radiative Models, PIC Simulations, and Machine Learning"
- Gaetan Gauthier a soutenu sa thèse "Étude de structures électroniques non-linéaires dans la magnétosphère et le vent solaire : théorie et simulations"
- Robin Varennes a remporté le prix de thèse de l’Ecole Doctorale Physique et Sciences de la Matière d’Aix-Marseille Université