Accueil Imprimer Annuaire Plan du site Crédits Fil RSS du site Twitter Plans d'accès Contacts Annuaire Webmail Intranet Logo

Accueil > Séminaires et conférences > Séminaires, soutenances de thèses et HDR précédents > 2012 > Soutenances de thèses et HDR 2012 > Thèse d’Amine Rhouni le 21 novembre à 14h

Thèse d’Amine Rhouni le 21 novembre à 14h

Étude de fonctions électroniques ASIC pour instruments dédiés à l’étude des plasmas spatiaux

Lieu  : Jussieu, amphi Herpin dans le bâtiment Esclangon

Résumé :
La couronne solaire est la source d’un vent de plasma qui interagit avec les divers objets du système solaire : planètes, comètes et astéroïdes. Le développement des instruments destinés à être embarqués à bord de satellites et de sondes spatiales permet d’étudier, in situ, les relations soleil Terre et plus généralement le vent solaire et les environnements ionisés planétaires. L’étude de ces phénomènes nécessite la combinaison d’instruments permettant de caractériser à la fois les ondes et leurs particules. Nous nous sommes intéressés à l’intégration de l’électronique des instruments spatiaux, et notamment la chaine d’amplification analogique de magnétomètres à induction et la chaîne d’amplification / discrimination de détecteurs de particules, en technologie standard CMOS 0.35μm. Les circuits étudiés, associés respectivement au magnétomètre à induction et au détecteur de particules, permettent l’amplification faible bruit à basse fréquence et l’amplification ultrasensible de charge sur une large gamme. Ces circuits doivent en outre répondre aux exigences du spatial en terme de consommation, tenue en température et en radiation. Le mémoire de thèse s’articule autour de la présentation de l’environnement ionisé de la Terre, la présentation des instruments scientifiques (magnétomètre spatial et détecteur de particules), la description des architectures des circuits CMOS permettant d’atteindre des performances inédites.
Un travail important sur les structures d’amplifications a été mené afin de réduire considérablement la consommation et augmenter la sensibilité de la chaine électronique de traitement du détecteur de particules. Ainsi, la faisabilité d’une électronique intégrée multivoie pour l’analyseur de particules à optique hémisphérique contenant jusqu’à 256 pixels a été prouvée. Réduire le niveau de bruit en basse fréquence (de quelques 100 mHz à quelque 10 kHz) des circuits à base de composants MOS a toujours été une tache fastidieuse, puisque ce type de composants n’est à la base, pas destiné à une telle gamme de fréquence. Il a été donc nécessaire de concevoir des structures d’amplification originales par la taille non habituelle, voir à la limite autorisée par les procédés de fabrication, de leur transistors d’entrée. Cette solution a permis de réduire considérablement le niveau de bruit vu à l’entrée de l’électronique d’amplification des fluxmètres. L’avantage d’utiliser une technologie CMOS est le faible bruit en courant, la faible consommation et résoudre le problème de l’encombrement. Les résultats obtenus lors des tests de validations et en radiations sont très satisfaisants. Ils permettent d’ouvrir une éventuelle voie pour l’électronique intégrée au sein de l’instrumentation spatiale. Les performances obtenues notamment lors d’un tir fusée a renforcé la fiabilité d’une telles conceptions pour le domaine spatial


transparent
Tutelles : CNRS Ecole Polytechnique Sorbonne Université Université Paris Sud Observatoire de Paris Convention : CEA
transparent
©2009-2019 Laboratoire de Physique des Plasmas (LPP)

Mentions légales
Exploitant du site : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Hébergeur : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Directeur de la publication : Pascal Chabert (Directeur)