Accueil Imprimer Annuaire Plan du site Crédits Fil RSS du site Twitter LinkedIn Plans d'accès Contacts Annuaire Webmail Intranet outils & logiciels Logo

Accueil > A propos du LPP > Communication > Actualités archivées > 2022 > Robin Varennes defended his PhD "Flow drive in tokamak plasmas : competition and synergies between turbulence and neoclassical effects"

Robin Varennes defended his PhD "Flow drive in tokamak plasmas : competition and synergies between turbulence and neoclassical effects"

Toutes les versions de cet article : [English] [français]

On December 13, 2022, Robin Varennes defended his PhD "Flow drive in tokamak plasmas : competition and synergies between turbulence and neoclassical effects".

Abstract
The generation of flows in tokamak plasmas is a crucial subject, especially since their control via external momentum injection in future reactors will be near impossible. However, flows play a major role in the stability and performance of a fusion plasma. In this thesis, the generation of the flow perpendicular to the field lines, associated with the radial electric field, is studied in two experimentally relevant contexts. First, the effect of a 3D perturbation of the magnetic field such as the one caused by the modulation coming from the finite number of toroidal coils, also called "ripple", is studied. Such a perturbation affects the toroidal velocity of the plasma, itself generated spontaneously by the turbulence. Numerous experimental studies on different tokamaks have shown that these two effects drastically impact the toroidal velocity of the plasma. Using a theoretical model and simulations performed with the gyrokinetic code GYSELA, the competition and synergy between turbulence and ripple have been observed and quantified. Preliminary studies show that the effect of the ripple on the flows will not be negligible at the edge in ITER. In a second step, recent experiments on the WEST tokamak showing that the radial electric field is sensitive to the winding rate of the magnetic field lines, called "safety factor", are investigated numerically via gyrokinetic simulations. As observed experimentally, these simulations show that the radial electric field increases as the safety factor and the turbulent intensity decrease. The main effect comes from the turbulent energy transfer varying with the safety factor, which favors either very low frequency flows called "zonal flows", or higher frequency flows called “GAMs” .

Jury :
Directeur de thèse : M. Xavier GARBET, Commissariat à l’énergie atomique et aux énergies alternatives (CEA)/Institut de Recherche sur la Fusion par confinement Magnétique (IRFM)
CoDirecteur de thèse : Mme Laure VERMARE, Centre national de la recherche scientifique(CNRS)/Laboratoire de Physique des Plasmas (LPP)
Rapporteur : M. Stephan BRUNNER, Ecole Polytechnique Fédérale de Lausanne(EPFL)/Swiss Plasma Center(SPC)
Rapporteur : M. Tobias GOERLER, Max Planck Institute for Plasma Physics(IPP Garching)
Examinateur : Mme Daniela GRASSO Istituto dei Sistemi Complessi - CNR and Dipartimento di Energia (ISC-CNR)
Examinateur : M. Peter BEYER Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM)
Examinateur : M. Yanick SARAZIN CEA Cadarache
Examinateur : M. Etienne GRAVIER Université de Lorraine/Institut Jean Lamour

Dans la même rubrique :


transparent
CNRS Ecole Polytechnique Sorbonne Université Université Paris-Saclay Observatoire de Paris
transparent
©2009-2025 Laboratoire de Physique des Plasmas (LPP)

Mentions légales
Exploitant du site : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Hébergeur : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Directeur de la publication : Anne Bourdon (Directrice)

Accessibilité