Accueil Imprimer Annuaire Plan du site Crédits Fil RSS du site Twitter Plans d'accès Contacts Annuaire Webmail Intranet Logo

Accueil > A propos du LPP > Communication > Actualités archivées > 2020 > Make tokamak plasmas rotate by small axisymmetric magnetic disturbances

Make tokamak plasmas rotate by small axisymmetric magnetic disturbances

La rotation du plasma joue un rôle crucial dans le confinement de chaleur et de particules dans les tokamaks, y compris dans l’apparition du mode H de confinement amélioré.

Plasma rotation plays a crucial role on heat and particle confinement in tokamaks including the appareance of the H (high confinement) mode.

The classical equilibrium equation for tokamak plasma is the Grad-Shafranov equation, that neglects the plasma velocity and involves the pressure gradient although pressure is just a passive scalar and not an actuator. We must then go further to consider the issue of plasma velocity within a magnetohydrodynamic framework.

In the article just released Oueslati, Firpo, Physics of Plasmas 27, 102501 (2020), the axisymmetric steady states of the visco-resistive magnetohydrodynamic equations, including the non-linear (v.∇)v term, have been computed using the finite element method.

Playing on boundary conditions with external magnetic perturbations offers a way to break the natural up-down symmetry of the system and produce a net toroidal flow.

Using realistic parameters, some numerical results indicate that small perturbations of the magnetic configuration may be used to increase steady-state speeds and promote tokamak plasma confinement while preserving axisymmetry (which is a good way to prevent turbulence).

JPEG - 115.5 ko
Les valeurs quadratiques moyennes des vitesses toroïdale et poloïdale en unités Alfven sont tracées en fonction du nombre de Hartmann H. Dans un plasma de tokamak performant, on s’attend à ce que H puisse atteindre 108.
L’effet d’une petite perturbation magnétique sur la vitesses stationnaires toroïdale d’un plasma de tokamak à grand H est visible en comparant les courbes marron (avec pertubation) et bleu marine (sans perturbation). En l’absence de pertubation, le champ de vitesse toroïdale est antisymétrique haut-bas. On voit clairement que la perturbation brise la symétrie et permet de faire tourner le plasma beaucoup plus vite.

Dans la même rubrique :


transparent
CNRS Ecole Polytechnique Sorbonne Université Université Paris-Saclay Observatoire de Paris
transparent
©2009-2022 Laboratoire de Physique des Plasmas (LPP)

Mentions légales
Exploitant du site : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Hébergeur : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Directeur de la publication : Dominique Fontaine (Directrice)