Accueil Imprimer Annuaire Plan du site Crédits Fil RSS du site Twitter LinkedIn Plans d'accès Contacts Annuaire Webmail Intranet outils & logiciels Logo

Accueil > A propos du LPP > Communication > Actualités archivées > 2020 > Inna Orel defended her PhD thesis "Measurements of electric field and dissociated species in nanosecond discharges for kinetic and biological applications"

Inna Orel defended her PhD thesis "Measurements of electric field and dissociated species in nanosecond discharges for kinetic and biological applications"

Toutes les versions de cet article : [English] [français]

On December 18, 2020, Inna Orel defended her PhD thesis (Doctoral School of the Institut Polytechnique de Paris) on the work she carried out at the LPP, Ecole polytechnique and BIOS, Université de Reims Champagne-Ardenne.
The defense was held by videoconference because of the restrictions due to COVID-19.

Abstract :
The thesis presents absolute and time resolved measurements of O and N atom densities (optical actinometry and two photon absorbed laser induced fluorescence, TALIF, techniques) and electric field (electric field induced second harmonic generation, EFISH technique) as a function of specific deposited energy in nanosecond pulsed discharges at high reduced electric fields that develop in form of fast ionization wave. It has been shown that in conditions of both high reduced electric field and high specific deposited energy, reactions between charged and/or excited species define plasma behavior. The electric field in the fast ionization wave measured with 0.2 ns resolution had revealed the pressure-independent peak value of about 10 kV/cm and 1-3 ns duration that increases with pressure. The peak measured [O], 7.5x1016 cm-3, corresponds to 23% dissociation fraction in the discharge. For 1 eV/molecule at capillary discharge, N-atoms density reaches the peak value of 1.3x117 cm-3 at about 1 µs after the initiation of the discharge. [N] stays at the peak value up to 1 ms and then decreases exponentially until reaches the detection limit at 20 ms. [N] peak value corresponds to 10% dissociation fraction and to effective N-atom production energy cost of almost 10 atoms/100 eV. The thesis also discusses the interest of ns discharges in biological applications. Cold atmospheric plasma (CAP) device was developed for treatment of dental pulp derived mesenchymal stem cells. CAP effect on cells was assessed by morphological cell analysis, viability test, cytotoxicity test, proliferative test, labelled flow cytometry for measurements of intracellular reactive oxygen species accumulation and fluorescence microscopy for cytoskeleton and nuclei imaging that had led to establishment of non-toxic protocol of cell treatment by CAP.

Jury :

  • Khaled Hassouni / Professeur, Université Paris-Nord, France / Rapporteur
  • Timo Gans / Professeur, Dublin City University, Irlande / Rapporteur
  • Gabi Stancu / Professeur, École CentraleSupelec, France / Examinateur
  • Pierre Tardiveau / Maître de conférences, Université Paris-Saclay, France / Examinateur
  • Guilhem Gallot / Directeur de recherche, École Polytechnique, France / Examinateur
  • Simon Dap / Maître de conférences, Université de Toulouse, France / Examinateur
  • Svetlana Starikovskaia / Directeur de recherche, École Polytechnique, France / Directeur de thèse
  • Halima Kerdjoudj / Professeur des Universités, Université de Reims Champagne-Ardenne, France / Co-directeur de thèse

Dans la même rubrique :


transparent
CNRS Ecole Polytechnique Sorbonne Université Université Paris-Saclay Observatoire de Paris
transparent
©2009-2025 Laboratoire de Physique des Plasmas (LPP)

Mentions légales
Exploitant du site : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Hébergeur : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Directeur de la publication : Anne Bourdon (Directrice)

Accessibilité