Accueil > A propos du LPP > Communication > Actualités archivées > 2020 > Flight model of the search coil magnetometer of the JUICE mission delivered to ESA
Flight model of the search coil magnetometer of the JUICE mission delivered to ESA
Toutes les versions de cet article : [English] [français]
The JUICE (JUpiter ICy moons Explorer) emission is the first L-class mission of ESA Cosmic Vision 2015-2025 program. The launch of the spacecraft is scheduled for June 2022, with a cruise phase of about 7 years in the interplanetary space and several fly-bys of internal or telluric planets (Earth, Venus, Mars) a period of scientific observations of the Jovian system lasting about 3 years (nominal mission phase). The main objective of the mission is the study of Jupiter as a prototype of giant gas planets as well as the study of three of its Galilean moons discovered by Galileo (Europa, Callisto and Ganymede). The study of plasma phenomena in the Jovian magnetosphere and the plasma interactions between Jupiter and its moons is a very important part of the scientific objectives of the mission. The moon Ganymede is particularly important because it has its own magnetic field and therefore a magnetosphere embedded in Jupiter’s giant magnetosphere. JUICE will be the first satellite in the history of space missions to orbit Ganymede (for approximately 9 months).
The RPWI (Radio and Plasma Wave Instrument) experiment, coordinated by the Swedish Institute of Space Physics (Principal Investigator : Jan-Erik Wahlund) is one of the 11 groups (“consortia”) of the JUICE payload. RPWI will provide measurements of electric and magnetic fields by using various instruments such as Langmuir probes, electric antennas and a search coil magnetometer.
The Plasma Physics Laboratory (LPP) participates in the RPWI consortium as a Lead Co-Investigator by supplying the SCM search coil magnetometer. This magnetometer will allow for the first time three-dimensional measurement of magnetic fluctuations (0.1 Hz - 20kHz) in Jupiter’s magnetosphere. The use of highly integrated ASIC (Application-Specific Integrated Circuit) detection electronics combined with a three-axis sensor, all installed about 10 m away from the JUICE satellite platform, will allow high sensitivity measurements.
The measurements performed by SCM, together with the measurements of other RPWI instruments, will allow detailed studies of many types of electromagnetic fluctuations in Jovian plasmas, such as kinetic Alfvén waves, ion-cyclotron waves, lower hybrid waves as well as whistler waves and electron-cyclotron waves. All these fluctuations are central to the plasma electrodynamics of the Jovian system and are fundamental for the understanding of different energy transfer processes that lead to the acceleration and heating of ions and electrons (magnetic reconnection, wave-particle interaction, turbulence and shocks). The study of these processes is at the heart of the scientific activity of the LPP.
After a qualification campaign of the flight model started in October 2019, which was required to validate the functioning of the SCM instrument in the very harsh environment of Jupiter (high radiations, low temperatures -160 ° C), SCM was calibrated at the National Magnetic Observatory of Chambon-la-Forêt. SCM then passed ElectroMagnetic Compatibility (EMC) tests at ESTEC (ESA), to be finally delivered to ESA at the manufacturer of the JUICE satellite (Airbus Defense System) end of August 2020. The SCM instrument is currently being installed on the satellite boom and it will undergo satellite thermal vacuum testing in February 2021, along with all other instruments of the JUICE payload. The LPP SCM team has started the production of the SCM spare model, to be delivered at the end of 2020.
The SCM Team includes six scientists and five engineers of LPP (science lead : A. Retino, project manager : M. Mansour) and SCM was designed, built and tested in collaboration with L2E (Sorbonne University), DT-INSU (CNRS, Meudon), Nexeya and more than fifteen subcontractors with the significant support of CNES, CNRS and Ecole Polytechnique.

Dans la même rubrique :
- Nouveaux mécanismes réactionnels pour dissocier efficacement l’azote moléculaire dans des plasmas froids à haute densité d’énergie
- Sonder les chemins réactionnels dans les plasmas d’oxygène par la spectroscopie à cavité optique résolue en temps
- La thèse de Giulia Cozzani, ancienne doctorante du LPP, est publiée dans la collection Springer Theses avec la mention « Recognizing outstanding Ph.D. research »
- Mettre en rotation les plasmas de tokamak par de petites perturbations magnétiques axisymétriques
- Marlous Hofmans a soutenu sa thèse sur la " Caractérisation expérimentale des jets de plasma d’hélium "
- Alejandro Alvarez Laguna a été recruté comme chargé de recherche CNRS au LPP
- Le modèle de vol du magnétomètre à induction « search coil » de la mission JUICE a été livré à l’ESA
- La mission Cluster fête ses 20 ans
- Audrey Chatain a soutenu sa thèse sur "Interaction aérosols – plasma dans l’ionosphère de Titan"
- Les grains de poussières provenant des anneaux de Saturne amplifient la conductivité ionosphérique de la géante gazeuse !
- Nouvelle preuve de la présence de panaches d’eau sur Europe
- Florian Marmuse a soutenu sa thèse « Plasmas d’iode : études expérimentales et numériques. Application à la propulsion électrique. »
- Ouverture des candidatures pour le Master M2 de Physique des Plasmas et de la Fusion
- Une donnée fondamentale pour la dissociation du CO2 déterminée expérimentalement
- Le LPP à l’heure du confinement
- Lancement réussi pour Solar Orbiter
- Un nouveau modèle pour expliquer les modulations lumineuses des décharges plasma
- Inna Orel a soutenu sa thèse "Mesure du champ électrique et de la densité de particules dissociées dans des décharges nanosecondes pour des applications de cinétique et de biologie"
- Thomas Charoy a soutenu sa thèse "Etude numérique du transport des électrons dans un propulseur à effet Hall"
- Turbulence dans les plasmas spatiaux : première estimation in-situ du taux de dissipation d’énergie aux échelles cinétiques