Accueil Imprimer Annuaire Plan du site Crédits Fil RSS du site Twitter Plans d'accès Contacts Annuaire Webmail Intranet Logo

Accueil > Recherche > Plasmas Spatiaux > Missions spatiales > Tirs fusées > CHARM2 Rocket (NASA project)

CHARM2 Rocket (NASA project)


Sensor design : J. Moutoussamy & C. Coillot

Electronic design : D. Alison & C. Coillot

Scientific co-Investigator : P. Robert

Principle of classical sandwich giant magneto-impedance :

Giant magneto-impedance effect occurs in a ferromagnetic material supplied by a “high” frequency (few 100kHz up to GHz) alternating magnetic field biased with a static or low varying magnetic field (H). This one modifies the susceptibility of the ferromagnetic material and so on its impedance. GMI sandwich consists in a copper ribbon between 2 ferromagnetic ribbons (Figure 1 left). Value of the impedance modulus is related to the magnetic field H (Figure 1 right).

JPEG - 42.1 ko
Figure 1 : -left- GMI sandwich -right- Impedance modulus Z(H)

Bench test

A bench test presented on the figure below, using GPIB, has been used to characterize intrinsic sensitivities (SI= Z/H). All the relevant parameter can be swept to determine the optimal configuration (excitation current, bias field, excitation frequency).

JPEG - 56.5 ko
Figure 2 : Bench test synoptic

A Helmholtz coil is used to generate the magnetic field to be measured, while a solenoid is used to generate the bias magnetic field. An example of characterization of Z(H) and SI(H) is presented below (Figures 3 - 4).

JPEG - 113.4 ko
Figure 3 : Z(H) at different excitation frequencies
JPEG - 139.6 ko
Figure 4 : SI (H) at different frequencies.

Intrinsic sensitivity curves exhibit a maximum at a characteristic field (effective anisotropic field). Many soft magnetic materials (Ni-Fe alloy but also Mn-Zn ferrite) display a strong GMI effect and demagnetizing coefficient of the magnetic material has be founded to be of great importance (Link to demagnetizing field coefficient modelling)

Wounded sandwich GMI for CHARM2 experiment

The combined AC/DC magnetometer uses a very high sensitivity wounded giant magneto-impedance sensor (figure 5) combined to search-coil sensor. A low noise amplifier using a double modulation to suppress offset and makes output voltage directly proportional to magnetic field is used.

Wounded GMI (Figure 5) has two advantages :
-  low frequency excitation (few 100kHz instead of several MHz) and low current consumption (few mA) are used
-  easy to manufacture (lamellas of magnetic material is manually cut off and wounded) => it is a potential low cost device.

JPEG - 46.7 ko
Figure 5 : Wounded sandwich GMI

Each sensor is characterized in terms of intrinsic sensitivity (Fig. 6), which represents the slope of the Z(H) curve of the sensor : with respect to magnetic field to find the optimum operating point. We make the measurement in 3 directions :
-  orthogonal to Earth magnetic field ("Sens 1")
-  parallel to earth magnetic field ("Sens 2")
-  anti-parallel ("Sens 3")

JPEG - 59.2 ko
Figure 6 : Sensor sensitivity

That allows verifying the symmetrical behaviour of the sensor and its excursion inside Earth magnetic field. The optimal bias point is chosen at the maximum value of intrinsic sensitivity.

Low noise electronic is schematically represented on Figure 7. Excitation current and bias current are supplied using the same winding. The output signal is amplified and then demodulated twice (at excitation frequency and at bias frequency). The offset is suppressed thanks to the high pass filtering after the first demodulation at Fexc. The ouput signal is linearized as the bias is alternately on optimum bias point and opposite point. Thus, the slope of the intrinsic sensitivity curve is compensated.

JPEG - 40.2 ko
Figure 7 : Low noise amplifier for giant magneto-impedance sensors.}

In order to retrieve direction of magnetic field components of wave a tri-axis sensor associated to a 3 channels electronic amplifier has been realized and tested (cf. Figure 8 & 9).

JPEG - 99.4 ko
Figure 8 (left) : Hybrid search-coil/wounded giant magneto impedance and the tri-axis mechanical structure. Figure 9 (right) : Low noise preamplifier for search-coil (PCB inside housing) and GMI electronic (PCB outside housing) and their mechanical housing

Performances of the whole magnetometer are under investigation.

JPEG - 70.7 ko
Figure 10 : Transfer function of GMI magnetometer X, Y and Z axis
JPEG - 36.3 ko
Figure 11 : Output linearity of GMI magnetometer.

Preliminary measurements results demonstrate an ability to measure weak magnetic field lower than 1nT/sqrt(Hz) at 1Hz (cf. Figure 12). This ability is much better than the one of AMR sensor and Hall Effect sensor. Robustness of wounded giant magneto-impedance sensor should be mentioned.

JPEG - 82.8 ko
Figure 12 : Noise Equivalent Magnetic Induction -NEMI- of wounded GMI

The hybrid search-coil/GMI magnetometer has been on boarded on CHARM 2 NASA rocket in combination with an lowfrequency analyzer. The whole experiment is presented on Figure 13. The instrument installed on the CHARM2 rocket is presented on Figure 14.

JPEG - 89.7 ko
Figure 13 : Hybrid search-coil/GMI magnetometer and low frequency analyzer.
JPEG - 102 ko
Figure 14 : Tri-axis sensor mounted on the CHARM2 rocket boom (November 2009 at NASA Wallops flight center)

Datas from CHARM2 rocket launch :

A quick look on rocket datas allows recognizing the different step of the launch. First of all, just after the launch the rocket starts to spin into the Earth magnetic field. This spin is related to the sinewave on GMI magnetometer datas (Figure 15 to Figure 18). Spin starts to increase rapidly to reach 3-4 rotations per second. Spin is noticeable on the three axes (Figure 16), even if it is smaller on Y axis (aligned with the spin axis).

JPEG - 101.8 ko
Figure 15 : Spinning of the rocket
JPEG - 123.6 ko
Figure 16 : Bx, By andt Bz before the boom deployment

In a second step, boom on which GMI magnetometer is mounted, is deployed. The spin is transferred from Y axis to Z axis (Figure 17). In this nominal configuration (Figure 18) Z axis is aligned with rocket while X et Y are in the spin place.

JPEG - 83.6 ko
Figure 17 : Boom deployment
JPEG - 125.8 ko
Figure 18 : Bx, By and Bz after boom deployment

Finally the spectrogram on Figure 19 summarizes the measurement provided by the GMI magnetometer during the launch. A first line around 3Hz corresponds to the spin signature, while a second line at 1Hz corresponds to a small oscillation around spin axis.

JPEG - 158.2 ko
Figure 19 : Three-axis spectrogram

Successful launch for CHARM2 on Fevruary 16, 2010

It was launched by NASA, from Poker Flat Research Range, in Fairbanks, Alaska.

See the story in pictures

PDF - 211.3 ko
demagnetizing field coefficient modelling
pdf à télécharger

(mise à jour 02/2015)

Tutelles : CNRS Ecole Polytechnique Sorbonne Université Université Paris Sud Observatoire de Paris Convention : CEA
©2009-2019 Laboratoire de Physique des Plasmas (LPP)

Mentions légales
Exploitant du site : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Hébergeur : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Directeur de la publication : Pascal Chabert (Directeur)