Accueil Imprimer Annuaire Plan du site Crédits Fil RSS du site Twitter LinkedIn Plans d'accès Contacts Annuaire Webmail Intranet outils & logiciels Logo

Accueil > A propos du LPP > Communication > Actualités archivées > 2022 > Benjamin Esteves defended his "Investigation of iodine plasmas for space propulsion applications"

Benjamin Esteves defended his "Investigation of iodine plasmas for space propulsion applications"

Toutes les versions de cet article : [English] [français]

On December 13, 2022, Benjamin Esteves defended his PhD "Investigation of iodine plasmas for space propulsion applications".

Abstract :
Since the 1960s, the most used gas for electric space propulsion has been xenon, a heavy atom that is easy to ionise. However, its limited annual production and growing demand require to find a sustainable alternative with comparable performance. Iodine is a viable candidate to succeed it. In this work, we try to understand how and why iodine, in its plasma state, can serenely face the battle with its competitors in the space race.
On the one hand, two experimental iodine plasma set-ups (a gridded-ion thruster and a quartz cell) were used, in which various electrical and optical diagnostics (Langmuir probe, photodetachment, absorption, TALIF) were developed and successfully applied, some of them for the first time. This experimental work allowed the measurement of the absolute values of density and temperature of different species in the plasma, highlighting important heating mechanisms.
On the other hand, a rigorous bibliography on the collision data of atomic and molecular iodine allowed the development of numerical simulation tools aiming at reproducing the functioning of iodine plasmas. Firstly, a 0D model was updated and enriched to take into account the heating of neutral species. Secondly, a 1D multi-fluid model of the three major neutral species (atom in its ground state, first excited atomic state and molecule) has been developed to simulate their densities, velocities and temperatures along the thrust axis.
Experimental-modeling comparisons have shown that : (i) at low injection rates, the plasma is completely dissociated and composed of I atoms, I+ ions and electrons. In this operating regime, where dissociation is energetically inexpensive, iodine can revolutionize the field of electric propulsion by outperforming its noble competitors (argon, krypton and xenon) ; (ii) at higher flow rates, the molecules are no longer negligible and easily produce negative I- and molecular I2+ ions. Under these conditions, iodine is no longer competitive for propulsion, with krypton offering even better performance.

Jury :
Président : Jérôme Perez, Professeur, ENSTA Paris
Rapporteur : Stéphane Mazouffre, Directeur de recherche, CNRS-ICARE
Rapporteur : Daniel Comparat, Directeur de recherche, CNRS-LAC
Examinateur : Trevor Lafleur, Senior scientist, ThrustMe
Examinateur : Emilie Despiau-Pujo, Maître de conférence, Université Grenoble-Alpes
Examinateur : Olivier Duchemin, Ingénieur, Safran
Directeur : Pascal Chabert, Directeur de recherche, CNRS-LPP
Co-directeur : Cyril Drag, Directeur de recherche, CNRS-LPP

Dans la même rubrique :


transparent
CNRS Ecole Polytechnique Sorbonne Université Université Paris-Saclay Observatoire de Paris
transparent
©2009-2025 Laboratoire de Physique des Plasmas (LPP)

Mentions légales
Exploitant du site : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Hébergeur : Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay F-91128 PALAISEAU CEDEX
Directeur de la publication : Anne Bourdon (Directrice)

Accessibilité