Accueil > A propos du LPP > Communication > Actualités archivées > 2022 > A simple formula to choose the energy levels of xenon and krypton most appropriate for temperature diagnostics, thanks to minimal hyperfine broadening
A simple formula to choose the energy levels of xenon and krypton most appropriate for temperature diagnostics, thanks to minimal hyperfine broadening
Toutes les versions de cet article : [English] [français]
Summary : Spectral broadening of fluorescence lines usually stems both from Doppler broadening and hyperfine splitting. For temperature measurements, either in atomic vapours or low temperature plasmas, only the first broadening source is of interest. In order to measure it in a simple way, it appears profitable to aim at atomic levels with minimal hyperfine structure broadening or even with no hyperfine structure at all. Meanwhile, in noble gases such as xenon and krypton, which are commonly used in “two-photon absorption laser induced fluorescence” (TALIF) measurements, hyperfine structure essentially stems from a single origin. Within a very good approximation, it gets determined only by the coupling of the unexcited electron core (aka “ionic core”) with the magnetic dipole and electric quadrupole of the nucleus. Variations of the hyperfine splitting, from one to another level, thus only come from the variety of ways the angular momentum of the ionic core can couple with the orbital angular momentum and spin of the excited electron. The way the total electron angular momentum is built up appears as the key factor to make the hyperfine energy levels more or less sensitive to the nuclear orientation. This sensitivity can be quantified in an explicit function of the angular quantum numbers.
Excited states of noble gas atoms, especially Xe et Kr, are characterized by quantum numbers usually listed in the order of decreasing influence on the final energy levels : jC, the total angular momentum of the inner, unexcited electrons (the "ionic core”), n and ℓ, the principal quantum number and orbital angular momentum of the excited electron, respectively, K the angular momentum that totalizes jC and ℓ, J the total electron angular momentum including the spin s=1⁄2 of the excited electron and F the total angular momentum, including the nuclear spin I. All sums of angular momenta must remain within the limits set by the addition rules, either the classical rules depicted by the figure (below) or the more rigorous quantum rules. Hyperfine structure is the variation of the atomic energy as a function of F, when I and J have given values. The dipolar component of the hyperfine structure, ΔD, appears proportional to the scalar product of vectors I and J : ΔD=A I·J, with a proportionality constant A, or "dipolar hyperfine coefficient", that measures the sensitivity of the electron-to-nucleus coupling with respect to the relative orientation of the electron and nuclear angular momenta, J and I, respectively.
Quantum calculations show that, for all states, the hyperfine coefficient A can be obtained as the product of a single hyperfine parameter, which characterizes the ionic core, with a dimensionless function of the angular momentum quantum numbers (with jC just written j for the sake of brevity) :
As we have shown in a study to be published soon [1], the above formula reproduces the measured variations of the hyperfine coefficient A quite suitably, both for Xe and Kr. It fully backs the observation that levels with jC=3/2, ℓ=3, K=5/2, J=2 – in standard notation nf[5/2]2 levels – have a particularly small hyperfine splitting [2]. Meanwhile, according to the same formula, no angular momentum combination can be found that would make hyperfine coefficient A strictly equal to zero.
A similar formula can be established for the ratio Λ expected between the quadrupolar coefficient B and the analogous quadrupolar coefficient BC of the ionic core :
This second formula also reproduces the measured variations quite satisfactorily, for the atoms that give rise to quadrupolar hyperfine coupling (i.e., for xenon, 131Xe only). Remarkably, when all angular momenta get aligned to produce a maximum J value (i.e. J=K+1/2 and K=ℓ+3/2), ratio Λ appears to be exactly 1, as suggested by the classical picture (given by the figure above) ; explicitly, when jC gets aligned with J, the projections of I on jC and on J are equal, which makes the quadrupole splitting due to core-nucleus coupling pass unaltered to the energy spectrum of the whole neutral atom. In krypton for instance, one has checked experimentally that s[3/2]2, p[5/2]3 and d[7/2]4 levels have identical B values, which are also the maximum ones [3].
These “geometrical” variation laws of the hyperfine structure of noble gases had been alluded to, more or less explicitly, in atomic spectroscopy theses defended in the 70s, but they had, to our knowledge, never been published.
[1] “The angular pattern in the hyperfine structure of Xe I and Kr I atoms”, Christophe Blondel & Cyril Drag, to be published in J. Phys. B : At. Mol. Opt. Phys. (2022) -
[2] “Sub-Doppler two-photon-excitation Rydberg spectroscopy of atomic xenon : mass- selective studies of isotopic and hyperfine structure”, M. Kono et al., J. Phys. B : At. Mol. Opt. Phys. 49 (2016) 065002
[3] “Hyperfine spectra of the radioactive isotopes 81Kr and 85Kr”, B.D. Cannon, Phys. Rev. A 47 (1993) 1148

Dans la même rubrique :
- Une compétition pour la rotation spontanée du plasma
- Ouverture des candidatures pour le Master M2 de Physique des Plasmas et de la Fusion
- Une conférence grand public à propos de l’influence du Soleil sur la Terre et de la mission Solar Orbiter au parc du château de Plaisir
- Lui Habl a soutenu sa thèse "Étude des phénomènes de panache des propulseurs ioniques à grille, polarisés en courant continu et en radiofréquence"
- Article de revue sur la physique des jets de plasmas à pression atmosphérique et leurs interactions avec des surfaces
- Le LPP a la tristesse de vous faire part du décès de Catherine Jégu
- Giulia Cozzani, ancienne doctorante du LPP a obtenu le Prix Vincenzo Ferraro 2022
- Audrey Chatain lauréate du prix René Pellat 2021 de la Société Française de Physique (SFP)
- Le premier symposium international sur le recyclage du CO2 par plasma/catalyse clôture le projet H2020 PIONEER
- Champ ambipolaire électrostatique dans les plasmas poussiéreux
- Henri Decauchy a soutenu sa thèse « Physique des jets de plasma froid : étude fondamentale des streamers guidés et applications à l’oncologie »
- Les plasmas pour l’utilisation des ressources in situ (ISRU) dans les missions Martiennes
- Fête de la Science 2022
- Cérémonie de remise du prix plasma 2019 de l’AVS (American Vacuum Society) pour Jean-Paul Booth
- Robin Varennes a soutenu sa thèse "Génération d’écoulements dans les plasmas de tokamak : compétition et synergies entre turbulence et effets néoclassiques"
- Benjamin Esteves a soutenu sa thèse "Investigation of iodine plasmas for space propulsion applications"
- Jonas August a soutenu sa thèse "Etude des effets d’un plasma froid d’air ambiant sur la physiologie des graines d’Arabidopsis"
- Soboh Alqeeq a soutenu sa thèse "Processus de conversion d’énergie liés aux fronts de dipolarisation dans la queue géomagnétique"
- Une conférence grand public sur la mission Solar Orbiter et les éruptions solaires au Museum d’histoire naturelle de Nantes
- Un diagnostic virtuel de diffusion Thomson collective pour étudier les instabilités de dérive d’électrons dans les propulseurs à effet Hall