Accueil > A propos du LPP > Communication > Actualités archivées > 2022 > A competition for the spontaneous rotation of the plasma
A competition for the spontaneous rotation of the plasma
Toutes les versions de cet article : [English] [français]
Control of rotation is a major challenge in order to obtain a stable and well-confined plasma in future tokamak fusion reactor. While energetic neutral particle injectors allow partial control of flows in medium-sized tokamaks, the large volume of plasma in ITER will make this control more difficult. However, the flows play a key role in the stability of the plasma and the quality of the confinement.
A fascinating observation is that a tokamak plasma rotates, even in the absence of an external source of momentum. This phenomenon is called "intrinsic rotation". There are two mechanisms leading to intrinsic rotation : the force exerted by turbulence and magnetic braking effects.
The turbulence acts on the rotation via an exchange of momentum between waves and particles, which locally bring a net angular momentum to the plasma. The resulting velocity is called "self-generated velocity". The 3D effects of the magnetic field have the consequence of constraining the trajectories of the particles. These constraints are responsible for collisional magnetic braking which imposes the flow velocity of the plasma. This velocity, called “relaxed velocity”, is finite and depends on the temperature gradient. Each of these effects taken separately is well documented.
However, the competition between these two mechanisms has never been studied before. For this study, the 3D perturbation of the magnetic field considered is the "ripple", i.e. the modulation of this field due to the finite number of coils. The larger the amplitude of this perturbation, the more the plasma velocity will tend to reach its relaxed prediction. Conversely, if this amplitude is low or the turbulent intensity is high, it is towards the self-generated prediction that the plasma flows.
The idea is that there is a critical ripple amplitude at which the velocity is closer to its relaxed prediction than to the self-generated one. From an analytical theoretical model, a simple expression of this threshold has been obtained. Its validity has been proven by means of gyrokinetic simulations with the GYSELA code, which take into account both mechanisms in a self-consistent manner, performed with ripple amplitudes below and above this threshold. As expected, the effect of turbulence is subdominant in the high ripple amplitude case, and vice versa for the low amplitude case. Using the critical ripple expression, first estimates on ITER seem to show that the ripple effect will not be negligible near the plasma edge.
Associated publication : R. Varennes et al, Phys. Rev. Lett. 128, 255002
Contact at LPP : Laure Vermare

Dans la même rubrique :
- Une compétition pour la rotation spontanée du plasma
- Ouverture des candidatures pour le Master M2 de Physique des Plasmas et de la Fusion
- Une conférence grand public à propos de l’influence du Soleil sur la Terre et de la mission Solar Orbiter au parc du château de Plaisir
- Lui Habl a soutenu sa thèse "Étude des phénomènes de panache des propulseurs ioniques à grille, polarisés en courant continu et en radiofréquence"
- Article de revue sur la physique des jets de plasmas à pression atmosphérique et leurs interactions avec des surfaces
- Le LPP a la tristesse de vous faire part du décès de Catherine Jégu
- Giulia Cozzani, ancienne doctorante du LPP a obtenu le Prix Vincenzo Ferraro 2022
- Audrey Chatain lauréate du prix René Pellat 2021 de la Société Française de Physique (SFP)
- Le premier symposium international sur le recyclage du CO2 par plasma/catalyse clôture le projet H2020 PIONEER
- Champ ambipolaire électrostatique dans les plasmas poussiéreux
- Henri Decauchy a soutenu sa thèse « Physique des jets de plasma froid : étude fondamentale des streamers guidés et applications à l’oncologie »
- Les plasmas pour l’utilisation des ressources in situ (ISRU) dans les missions Martiennes
- Fête de la Science 2022
- Cérémonie de remise du prix plasma 2019 de l’AVS (American Vacuum Society) pour Jean-Paul Booth
- Robin Varennes a soutenu sa thèse "Génération d’écoulements dans les plasmas de tokamak : compétition et synergies entre turbulence et effets néoclassiques"
- Benjamin Esteves a soutenu sa thèse "Investigation of iodine plasmas for space propulsion applications"
- Jonas August a soutenu sa thèse "Etude des effets d’un plasma froid d’air ambiant sur la physiologie des graines d’Arabidopsis"
- Soboh Alqeeq a soutenu sa thèse "Processus de conversion d’énergie liés aux fronts de dipolarisation dans la queue géomagnétique"
- Une conférence grand public sur la mission Solar Orbiter et les éruptions solaires au Museum d’histoire naturelle de Nantes
- Un diagnostic virtuel de diffusion Thomson collective pour étudier les instabilités de dérive d’électrons dans les propulseurs à effet Hall